Supplemental Figures and Legends Supplemental figure 1. Characterization and purity analysis of α-Syn^{WT} and mutant. (A) SDS PAGE of recombinant α-Syn^{WT} and α-Syn^{G51D} shows that both proteins run as a single monomeric band. (B) ESI-MS indicates the correct masses (expected masses are 14'461Da for α-Syn^{WT}, and 14'519Da for α-Syn^{G51D}). (C) Multi-angle light scattering. Both proteins show monomeric elution profiles. The calculated masses are: α-Syn^{WT}: 13.18 KDa (+/-3%), α-Syn^{G51D}: 13.15 KDa (+/-4%). (D) UPLC analysis of recombinant proteins; single, sharp and symmetrical peaks are obtained. (E) Circular dichroism confirms the random coil conformation of WT and G51D α-Syn. (F) Plot of averaged amide chemical shift difference [$\Delta \delta_{amide} = \sqrt{(\frac{1}{2}(\Delta \delta_{HN}^2 + (\Delta \delta_N/5)^2))}$] between the free state α-Syn^{G51D} and α-Syn^{WT} spectra as a function of residue number. The lines show 3-residue averages. (G) Plot of alpha-carbon secondary shifts (difference between measured chemical shift and random coil chemical shift) for α-Syn^{WT} (black) and α-Syn^{G51D} (red) in aqueous buffer by residue number. The lines show 3-residue averages. (H) Plot of ratio of cross-peak intensity of samples spin-labeled at position 20 to samples without spin-label for α-Syn^{WT} (black) and α-Syn^{G51D} (red), in aqueous buffer by residue number. The lines show 3-residue averages. **Supplemental figure 2. Both** α-Syn^{WT} and α-Syn^{G51D} form α-helices when incubated with TFE. (A) Circular dichroism of α-Syn^{WT} and α-Syn^{G51D} mixed with different percentages of TFE. Both proteins form α-helices in the presence of high TFE percentage, demonstrating the inherent ability of both WT and mutant α-Syn to form α-helices in a membrane-mimicking environment. (B) Circular dichroism of α-Syn^{WT} and α-Syn^{G51D} mixed with protein:lipid weight ratios of 1:0, 1:0.5, 1:2, 1:5 and 1:10, and incubated for 24h at 37°C under shaking conditions. At high POPG content, formation of β-sheet is inhibited in the case of the WT protein, due to the strong α-helical conformation. (C) Kinetics of aggregation of 100μM α-Syn^{WT} and α-Syn^{G51D} followed by ThT +/- S.E.M (*: p-value<0.05, **: p-value<0.01, ***: p-value<0.001, n=3). Similarly to the experiments performed at 10μM, the G51D mutant shows a longer lag phase and reaches a lower plateau ThT value. Supplemental figure 3. Detection of nuclear α -Syn by immunocytochemistry and live imaging in HEK cells. (A) Immunocytochemical analysis of HEK cells expressing α -Syn WT or α -Syn G51D using different antibodies targeting α -Syn shows that unlike the Syn208, Syn211, and FL-140 antibodies, the EP-1646Y, SA3400 and Syn-1 (shown in Figure 3) antibodies efficiently detect nuclear α -Syn. (B) Scheme depicting the α -Syn protein and the epitopes of the antibodies tested in (A) and in Figure 1. (C) Live imaging of HEK cells transfected with WT or G51D mEOS2- α -Syn (left panel) or α -Syn-mEOS2 (right panel) shows that all expressed proteins show cytoplasmic and nuclear localization. (D) Fluorescence intensity curves of nuclear photoactivated WT or G51D α -Syn-mEOS2 in cells photoconverted in the cytosol. For each condition, at least 25 cells were analyzed. Each plot represents mean \pm SD for each time point of all photoactivation experiments. Supplemental figure 4. Detection of nuclear α-Syn by immunocytochemistry in primary neurons. Immunocytochemical analysis of neurons expressing α-Syn^{WT} or α-Syn^{G51D} shows that all tested antibodies (Syn-208, Syn-211 and Syn-1) detect α-Syn in neuronal soma and neurites (**A-C**, low magnification images). However, whereas the Syn-208 (**D**) and Syn-211 (**E**) antibodies detect only cytosolic α-Syn within soma, the Syn-1 antibody detects additional nuclear signal in both WT and α-Syn^{G51D} expressing neurons (**F**). MAP2 and SNAP-25 were used as markers to delineate neurons (**A**, **B**, **D**, **E**), and presynaptic terminals (**C**, **F**) respectively. Note that in (**C**), colocalization analysis was performed on a circular region of interest (white circle) having neuritic expression of α-Syn to establish colocalization with SNAP-25. Supplemental figure 5. Helical wheel representation of α-Syn^{G51D} extended and broken helix conformations. Basic residues are in blue, acidic residues in pink, amide residues in orange and hydrophobic residues in black. (A) When α-Syn^{WT} binds to lipid vesicles, it adopts an extended 11/3 α-helix conformation. By introducing a charged residue into the apolar face of the amphipathic α-helix, the G51D mutation might perturb its capacity to interact with the hydrophobic phospholipid tails. (B) In the presence of SDS, the N-terminal region of α-Syn^{WT} forms a broken-helix made of two antiparallel helices connected by a short linker (1-4). The G51D mutation introduces a negative charge in the apolar face of the helix-2 (2, 4), which might perturb the ability of this region to interact with the hydrophobic interior of the detergent micelle. ## **Supplemental Tables** Table S1: List of antibodies used in this study. | | Antibody | Source/Reference | Dilution | |------------|-------------|--------------------------|----------| | | Syn-211 | Santa Cruz | 1:1000 | | | FL-140 | Santa Cruz | 1:750 | | | N-19 | Santa Cruz | 1:100 | | | Syn-1 | BD lab | 1:1000 | | | EP-1646Y | Abcam | 1:750 | | Anti α-Syn | Syn-208 | Virginia Lee, University | 1:500 | | | | of Pennsylvania, CNDR, | | | | | Philadelphia,PA) (5, 6) | | | | SA3400 | Millipore | 1:750 | | | pS129 α-Syn | WAKO | 1:2000 | | | pS129 α-Syn | MJF-R13 | 1:1000 | | | SNAP-25 | Cell Signaling | 1:1000 | | | MAP-2 | Cell Signaling | 1:750 | | Other | GRK6 | Santa Cruz | 1:1000 | | | Flag | Abcam | 1:1000 | | | Actin | Abcam | 1:5000 | ## **References** - 1 Borbat, P., Ramlall, T.F., Freed, J.H. and Eliezer, D. (2006) Inter-helix distances in lysophospholipid micelle-bound alpha-synuclein from pulsed ESR measurements. *J Am Chem Soc*, **128**, 10004-10005. - 2 Bussell, R., Jr. and Eliezer, D. (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. *J Mol Biol*, **329**, 763-778. - 3 Chandra, S., Chen, X., Rizo, J., Jahn, R. and Sudhof, T.C. (2003) A broken alpha -helix in folded alpha -Synuclein. *J Biol Chem*, **278**, 15313-15318. - 4 Ulmer, T.S., Bax, A., Cole, N.B. and Nussbaum, R.L. (2005) Structure and dynamics of micelle-bound human alpha-synuclein. *J Biol Chem*, **280**, 9595-9603. - 5 Tsika, E., Moysidou, M., Guo, J., Cushman, M., Gannon, P., Sandaltzopoulos, R., Giasson, B.I., Krainc, D., Ischiropoulos, H. and Mazzulli, J.R. (2010) Distinct region-specific alphasynuclein oligomers in A53T transgenic mice: implications for neurodegeneration. *J Neurosci*, **30**, 3409-3418. - 6 Giasson, B.I., Duda, J.E., Quinn, S.M., Zhang, B., Trojanowski, J.Q. and Lee, V.M. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. *Neuron*, **34**, 521-533.